MEC CSD2007-00057 (2007-2013)

Coordinador

  • Javier Paz-Ares; Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, C.S.I.C., Madrid.

Investigadores principales de subproyectos

  • Javier Paz-Ares, Carmen Castresana, Salomé Prat, José Miguel Martínez Zapater, Roberto Solano; Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, C.S.I.C., Madrid.
  • Crisanto Gutiérrez; Centro de Biología Molecular Severo Ochoa- CSIC, Madrid.
  • Montserrat Pagés; CRAG, Consorci CSIC-IRTA, Barcelona.
  • Miguel A. Blázquez, José León, Pablo Vera; Instituto de Biología Molecular y Celular de Plantas, C.S.I.C.-Universidad Politécnica de Valencia, Valencia.
  • Julio Salinas; Centro de Investigaciones Biológicas, C.S.I.C., Madrid.
  • José Manuel Pardo; Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Sevilla.
  • Luis Carlos Romero; Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C., Sevilla.
  • José Luis Micol; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche.
  • Miguel A. Botella; Universidad de Málaga.
  • Pilar Carbonero, José Antonio Jarillo; Centro de Biotecnología y Genómica de Plantas, I.N.I.A.-Universidad Politécnica de Madrid.
  • Carmen Fenoll; Universidad de Castilla-La Mancha, Toledo.
  • Óscar Lorenzo; Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca.
  • Lola Peñarrubia; Universidad de Valencia.

Otros miembros del consorcio

  • Carlos Alonso, Pilar Cubas, Antonio Leyva, Enrique Rojo, Carmen Simón; Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, C.S.I.C., Madrid.
  • David Alabadí, Francisco Madueño, Cristina Ferrándiz; Instituto de Biología Molecular y Celular de Plantas, C.S.I.C.-Universidad Politécnica de Valencia, Valencia.
  • Beatriz Cubero; Instituto de Recursos Naturales y Agrobiología, C.S.I.C., Sevilla.
  • Cecilia Gotor, José María Romero, Federico Valverde; Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C., Sevilla.
  • María Rosa Ponce; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche.
  • Miguel A. Botella; Universidad de Málaga.
  • Luis Oñate, Manuel Piñeiro, Juan Carlos del Pozo, Jesús Vicente Carbajosa; Centro de Biotecnología y Genómica de Plantas, I.N.I.A.-Universidad Politécnica de Madrid.
  • Montaña Mena; Universidad de Castilla-La Mancha, Toledo.

TRANSPLANTAlogo-1024x192

Función y potencial biotecnológico de los factores de transcripción de las plantas

Los factores de transcripción son proteínas reguladoras que han jugado un papel central en la evolución de los eucariotas, y cuyo potencial biotecnológico es cada vez más evidente. Una etapa inevitablemente previa a sus aplicaciones biotecnológicas es su análisis funcional, cuyo mayor obstáculo es la pertenencia de la mayoría de los factores de transcripción a familias génicas que incluyen numerosos miembros estructuralmente muy relacionados y, a menudo, funcionalmente redundantes. Nuestro objetivo en este proyecto es la caracterización funcional de los factores de transcripción del sistema modelo vegetal Arabidopsis thaliana mediante abordajes diseñados con dos propósitos: evitar los inconvenientes metodológicos que causa la redundancia funcional, y ensayar su potencial biotecnológico en plantas de interés económico.

El proyecto gravitará en torno a varios centros de referencia que serán responsables de generar recursos y de desarrollar actividades a gran escala. Además, una red de grupos más amplia se centrará en la investigación de aspectos más biológicos, contando con los recursos generados y las actividades desarrolladas en los centros de referencia. Confiamos en que el éxito de nuestra iniciativa generará un estándar para las actividades de otras comunidades científicas, contribuyendo así a la vertebración de la actividad científica en España.

Las actividades de investigación del proyecto son:

1.- Obtención de una colección de líneas transgénicas, en cada una de las cuales se expresará, bajo el control de un promotor inducible, un gen de un factor de transcripción o un microRNA artificial diseñado frente a una familia de genes de factores de transcripción muy relacionados entre sí. El fenotipo de estas líneas será caracterizado respecto a numerosos rasgos de desarrollo y crecimiento, así como de respuestas a distintas condiciones de estrés.

2.- Escrutinio, mediante micromatrices, de una colección de plantas de Arabidopsis thaliana altamente mutagenizadas mediante EMS. La eficacia de este procedimiento es tal que permitirá identificar mutaciones en los genes de los factores de transcripción, incluidos los de funciones parcialmente redundantes, ya que se espera que perturben de manera perceptible la expresión de al menos parte de sus genes diana. Las mutaciones que afecten a la expresión de genes de interés en relación a los caracteres fenotípicos evaluados serán clonadas empleando abordajes posicionales.

3.- Determinación, mediante micromatrices, de la especificidad de unión a ADN de una parte de los factores de transcripción estudiados. Esta información, combinada con los resultados obtenidos a partir del análisis bioinformático de los datos transcriptómicos, contribuirá a asociar a los factores de transcripción con los genes diana implicados en un determinado proceso biológico.

4.- Evaluación de la importancia biotecnológica de los factores de transcripción que regulen caracteres agronómicos relevantes, mediante el análisis de los efectos de la alteración de la expresión (reducida o incrementada) de sus ortólogos en especies cultivadas.

5.- Establecimiento de una infraestructura bioinformática para el almacenamiento y el análisis de datos.

Function and biotechnological potential of transcription factors in plants

Transcription factors (TFs) are regulatory proteins that have played a pivotal role in the evolution of eukaryotes and are believed to display great biotechnological potential. A main obstacle in the functional analysis of TFs, a required step towards any biotechnological application of these genes, is that they usually form part of large multigene families with closely related members that often show (partial) functional redundancy. In this project, our goal is to perform the functional characterisation of transcription factors of the model plant Arabidopsis thaliana following strategies designed to overcome (alleviate) the problems of functional redundancy among TFs and to examine the biotechnological potential of selected TFs in crop species.

The project gravitates on core centres, which will generate the resources and perform the highthroughput activities. Around these, a confederation of smaller groups will operate on the biologicallyfocussed research of the project. We expect that the success of our initiative will generate a standard for activities in other scientific communities, thereby contributing to the structuring of the Spanish scientific community.

The specific research activities of the project are:

1.- Preparation of a collection of transgenic lines each of which will express under the control of an inducible promoter a single TF-encoding gene or an artificial miRNA against two or more highly related TF genes. These lines will be phenotypically characterised in relation to a large number of developmental and stress-related traits.

2.- Microarray-based screening of a heavily EMS-mutagenised collection of Arabidopsis plants. Given the power of this screening it is expected that mutations even in partially redundant genes will be detected (as they will produce alterations in the expression of at least part of the target genes). Mutations affecting expression of relevant targets in correlation with the phenotypes examined will be isolated by positional cloning.

3.- Determination of the DNA binding specificity of a subset of TFs following a microarray-based approach. Information on TF binding specificity, together with bioinformatics analysis of the transcriptome data, will help associating TFs to target genes relevant to a given biological process.

4.- Assessment of the biotechnological importance of TFs identified because of regulation of agronomical/economical relevant traits, by testing the effects of controlled over-expression or down-regulation of the ortholog TFs in crop species.

5.- Implementation of a bioinformatics infrastructure for data storage and analysis.